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1 | INTRODUCTION

Hyperspectral images (HSIs) were captured by hyperspectral
sensors and contain hundreds of narrow-band spectral bands.
At present, HSIs is widely used in many fields, such as
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Abstract

In the past, convolutional neural network (CNN) has become one of the most popular
deep learning frameworks, and has been widely used in Hyperspectral image classification
tasks. Convolution (Conv) in CNN uses filter weights to extract features in local receiving
domain, and the weight parameters are shared globally, which more focus on the high-
frequency information of the image. Different from Conv, Transformer can obtain the
long-term dependence between long-distance features through modelling, and adaptively
focus on different regions. In addition, Transformer is considered as a low-pass filter,
which more focuses on the low-frequency information of the image. Considering the
complementary characteristics of Conv and Transformer, the two modes can be inte-
grated for full feature extraction. In addition, the most important image features corre-
spond to the discrimination region, while the secondary image features represent
important but easily ignored regions, which are also conducive to the classification of
HSIs. In this study, a complementary integrated Transformer network (CITNet) for
hyperspectral image classification is proposed. Firstly, three-dimensional convolution
(Conv3D) and two-dimensional convolution (Conv2D) are utilised to extract the shallow
semantic information of the image. In order to enhance the secondary features, a channel
Gaussian modulation attention module is proposed, which is embedded between
Conv3D and Conv2D. This module can not only enhance secondary features, but sup-
press the most important and least important features. Then, considering the different
and complementary characteristics of Conv and Transformer, a complementary inte-
grated Transformer module is designed. Finally, through a large number of experiments,
this study evaluates the classification performance of CI'TNet and several state-of-the-art
networks on five common datasets. The experimental results show that compared with
these classification networks, CITNet can provide better classification performance.

KEYWORDS
complementary integrated Transformer module, convolutional neural network, Gaussian modulation,
Transformer

geological exploration [1], object detection [2], atmospheric
environment monitoring [3, 4], and precision agriculture [5, 6].
The task of HSI classification is to identify the land cover
categories corresponding to the pixels in the image [7-9].
However, since the acquisition of HSIs by sensors is often
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affected by the atmosphere, shooting angle, and shooting in-
struments [10, 11], it is difficult to identify the land cover
category corresponding to pixels accurately.

In recent years, many works have made great achievements
in the field of computer vision by using deep learning (DL),
including image classification [12-14], target detection [15, 106],
semantic segmentation [17], and have been widely used in the
field of HSI classification [18]. Popular backbone networks in
DL include auto-encoders (AEs), convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), generative
adversarial networks (GANSs), capsule networks (CapsNet),
and graph convolutional networks (GCNs). In ref. [19], in
order to extract high-level features of images, a new hybrid
framework based on principal component analysis (PCA) [20],
DL architecture, and logistic regression [21] was proposed. At
present, GAN-based methods mainly focus on spectral-spatial
GANSs [22] and semi-supervised GANs [23]. In ref. [24], Lin
et al. proposed an improved GAN method, and better classi-
fication results are obtained. Due to the limited sample size of
HSI data, a semi-supervised adaptive neighbourhood strategy
based generative adversarial network (AN-GAN) was pro-
posed [25], which effectively improves the performance of the
classifier. In addition, Li et al. [26] proposed a GAN to auto-
matically extract the change regions between optical and SAR
remote sensing images, proving that a better GAN model can
improve the generated images. Paoletti et al. [27] proposed a
new spectral-spatial capsule network, and effectively reduced
the computational complexity. In addition, Hong et al. [28§]
proposed a mini-batch GCN (miniGCN), which provides a
feasible solution to the large graphs problem in GCNs.
Considering the spectral sequence characteristics, RNN [29]
can accumulate and learn image spectral features orderly due to
its natural sequence data design attributes, but RNN model
cannot be calculated in parallel.

Among the above popular backbone networks, CNN is the
most popular learning framework because of its powerful
image feature extraction ability [30-32]. Hyperspectral image
contains rich spectral and spatial information. There is no
doubt that the full extraction of spectral and spatial informa-
tion contained in HSIs can effectively improve the classifica-
tion results. In the early research work based on CNN, many
excellent networks appeared in HSI classification. In ref. [33],
Makantasis et al. constructed CNN network, which can auto-
matically extract the spectral and spatial information of images.
In order to make better use of spatial information, Cao et al.
[34] learnt the spatial information of images by constructing
CNN and updated CNN parameters using random gradient. In
ref. [35], Paoletti et al. proposed a deep pyramid residual
network (PyResNet) to extract more spatial information. For
extract more non-linear, discriminant, and invariant features,
Chen et al. [30] constructed a multilayer 2D convolution
network (2DCNN). However, these methods based on 2-D
CNN mostly extract the spatial features of the image, and
also have a lot of computational complexity. In addition, for
extract image spectral-spatial features and alleviate the problem
of computational parameter explosion, Lee and Kwon [37]
constructed a new end-to-end CNN by using multiple

convolution kernels of different sizes, and extracted rich
spectral-spatial features. Similarly, considering that the HSI of
2-D image and 1-D spectral information is very different from
that of 3-D target image, a multi-scale 3-D convolutional
neural network (BDCNN) was proposed [38]. Although, 3-D
CNN has been proved to be able to effectively extract the
spectral and spatial features of HSI, and effectively improve the
classification performance [39, 40]. However, with the deep-
ening of network, the error gradient will greatly update the
network parameters, resulting in network instability or gradient
disappearance [41]. For solve these problems, Zhong et al. [42]
introduced the residual structure into the spectral module and
spatial module, and proposed a spectral-spatial residual
network (SSRN). Roy et al. [43] proposed a hybrid spectral
convolution neural network (Hybrid-SN), which uses 3-D
CNNs and 2-D CNNs to acquire the spectral-spatial and
spatial information of HSI. Although the method based on
CNN shows a strong ability to extract spatial information and
local context information, it is undeniable that the method
based on CNN still has some limitations. On the one hand, it is
difficult for CNNs to capture sequence attributes well, espe-
cially medium-term and long-term dependencies. When some
image land cover categories are complex, it inevitably en-
counters the performance bottleneck in the task of HSI clas-
sification [44]. On the other hand, CNN uses convolution filter
weights for feature extraction in local receiving domain, and
the weight parameters are shared globally, resulting in CNN
paying too much attention to spatial content information and
ignoring important spectral features.

In the past 2 years, Transformer-based methods show great
potential in computer vision tasks [45—48]. Among them, the
most classic model is vision Transformer (ViT) [49], which
performs well in the field of image processing. In ref. [50], a
spectral-spatial Transformer (SST) was proposed. First, SST
use Visual Geometry Group Network (VGGNet) [51] to
extract spatial features and constructs a dense Transformer to
obtain long-term dependencies. In order to solve the problem
of spectral redundancy of HSI, a self-attention-based Trans-
former network (SATNet) [52] was proposed. In addition,
Hong et al. [44] proposed a spectral Transformer (SF),
reconsidered the Transformer from the perspective of spectral
sequence, and learnt the group adjacent spectral information
by constructing a cross layer Transformer encoder module.
Although these Transformer-based methods can effectively
learn spectral information of HSIs, they ignore local semantic
information, resulting in the lack of spatial information
acquisition. To solve this problem, Le et al. [53] proposed a
spectral-spatial feature tokenisation Transformer (SSFTT)
based on spectral-spatial feature. The network uses 3-D CNN
and 2-D CNN extract shallow layer features, and designs a
Gaussian weighted feature marker for feature transformation.
Similarly, in ref. [54], a spectral-spatial Transformer network
(SSTN) was proposed, and used a factorised architecture
search (FAS) framework to determine the hierarchical opera-
tion selection and block-level order of SSTN.

Conv uses filter weights to extract image features in local
receiving domain, and the weight parameters are shared
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globally, which makes the extracted features more focus on the
high-frequency information of the image [55]. On the contrary,
Transformer is considered as a low-pass filter [56], which more
focuses on the low-frequency information of the image.
Considering the complementary characteristics of Conv and
Transformer, integrating these two modes is beneficial to the
full extraction of features. Spectral-spatial feature tokenisation
Transformer [53] and SSTN [54] also fully verify this view.
However, these methods only use the simple combination of
Conv and Transformer, and the classification performance is
not very satisfactory. In order to better integrate the two
modes, this paper proposes a complementary integrated
Transformer network (CITNet). Firstly, CITNet uses Conv3D
and Conv2D to extract the spectral and spatial features of
HSIs. Secondly, considering the importance of secondary fea-
tures, a channel Gaussian modulation attention module
(CGMAM) is designed, which is embedded between Conv3D
and Conv2D to enhance the secondary features extracted by
Conv3D. Following, for make full use of the advantages of
Conv and Transformer, a complementary integrated Trans-
former module (CITM) is designed, which embeds Conv in
Transformer. Finally, a linear classifier based on softmax is
utilised for classification.
The main contributions of this paper are as follows:

(1) A CITM module is designed in this paper, which fully
considers the advantages of Conv and Transformer,

embeds Conv in Transformer, and effectively fuses the
obtained low-frequency information and high-frequency
information.

(2) Considering that the features extracted by Conv contain
secondary features, it is also helpful to improve the clas-
sification performance. Therefore, a CGMAM module is
proposed in this paper, which is used to enhance the
secondary features extracted by Conw.

(3) The proposed CITNet method in this paper systematically
integrates CNN and Transformer. This method can extract
high-frequency and low-frequency information of HSIs
more effectively, and can significantly improve the classi-
fication performance. Experiments on five common
datasets show the effectiveness of the CITNet.

The rest of this paper is organised as follows. Section 11
introduces all the modules of the proposed network in detail.
In Section III, the model is analysed, and the quantitative and
visual results of the experiment are given. Finally, this paper is
concluded in Section IV.

2 | METHODOLOGY

The overall structure of the proposed CITNet is shown in
Figure 1, which is mainly composed of three parts, including
feature extraction base on Conv, CGMAM, and CITM.
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FIGURE 1 The overall structure of the proposed CITNet.
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2.1 | Feature extraction based on Conv

In the field of HSI classification, CNNs have shown strong
feature extraction ability. HSIs contain rich spectral and spatial
information. Three-dimensional convolution (Conv3D) and
two-dimensional convolution (Conv2D) are adopted for
feature extraction of HSIs, which can not only acquire the
spectral-spatial joint features of the image, but acquire the
spatial features of the image solely. Therefore, the CI'TNet first
adopts Conv3D and Conv2D for feature extraction.

The original HSI is Z € {X, Y}, X € R™®*! is HSI data,
and Y = {y,y2,...,y¢c} is HSI label. Where, h X w is the
space size of the image, / is the number of bands of image, and
C is the largest numbert of category labels. Although HSI catry
a lot of useful spectral information, there are still many
redundant spectral. Therefore, PCA method is used to pre-
process the original HSI data for reduce the computational
complexity. After PCA preprocessing, the number of bands
bewxb Then,
3D cube extraction is performed on Xj,. N adjacent 3D cubes

changes from [ to b, and the output is Xy, €

x € R are generated by KXo, and s X s is the space size. In
particular, the central pixel of all x is (xi, x]-) , the label of each x
is determined by the label of the central pixel, and all x has
their corresponding labels. Where 0 <i< b, 0 <j < w. Then,
in addition to the background data, the remaining data

samples are divided into training dataset and test dataset.

Then, the spectral-spatial feature of x € R is extracted
through Conv3D, which can be expressed as

Shake (+a),3-A).
XYz __ a.pf, x+a),(y+h),(z+y)
Yij —f<Z K d v ya "'2’7])
(1)

where f(-) is the activation function; v; e

neuron at position (x,7, z) of the j-th feature map of layer i-th.
H;, W; and R; represent the helght width and depth of the 3-
D convolution kernel of layer i-th respectively. K ﬁ [ is the
weight parameter of the d-th feature cube at posmon (a B,7).
b;; ;j 1s the bias term. In the proposed CITNet, Conv3D module
(including Conv3D layer, BN layer, and ReLLU layer) are used

RSXSX(I

represents the

for feature extraction. The output feature size is and cis
the number of channels.
In order to fully extract features, Conv2D is adopted to

further extract the spatial features, which can be expressed as

H'-1 Wi-1

ZZ ZKZJd x*“ 3’+/3 +ba] (2)

a=0 p=0

where H': and W' are the height and width of 2-D convolution
kernel respectlvely K a4 tepresents the weight parameter of
the d-th feature map at position (H, W7).

The feature extraction of the data is carried out through a
Conv2D module (including Conv2D layer, BN layer, and
RelLU layer), and the output feature size is still R,

2.2 | Channel Gaussian modulation
attention module

It was demonstrated in ref. [57] that the most important feature
corresponds to the discrimination region, while the secondary
feature represents the important but easily ignored region. The
most important features are essential to improve the discrimi-
native ability, while the secondary features are also conducive to
better classification. Therefore, in order to enhance the sec-
ondary features, this paper proposed a CGMAM, which is
utilised to enhance the secondary channel featutres. The input is
Ajn € R (¢ represents the number of channels). Firstly, the
input A;, is average pooling, linear, and activation layet to
obtain the output feature Gj, including channel dependence.
Then, Gj, redistributes the distribution of features through
Gaussian modulation function, and enhance the secondary
features of the channel to obtain the output feature map Gy
Finally, G,,; petforms channel weighting with the otiginal input
Ajn. Howevet, the output obtained at this time retains only
secondary features. Therefore, the weighted output and the
original input 4;, are added pixel by pixel to obtain the output
Apur, which contain the enhanced secondary features and the
original important features. The above operations can be
expressed as

Ay = G(H(Py(Ai))) ® Ain + Ain (3)

where Ps(+) represents the average pooling function, H(-)
tepresents the linear and activation function layer, G(-) rep-
resents the Gaussian modulation function and @ represents
the channel by channel weighting,

In particular, in CGMAM, Gaussian modulation function
is used to redistribute the distribution of features.

Gom = G(Gm) (4)
Input Gj, can map all feature values to Gaussian distri-

bution through Gaussian modulation function. The mean p
and variance ¢ of Gaussian distribution can be represented as

1SN
ZN;G; (5)

1 & ; 2
0= N - (Gin _H) (6)

In order to better explain the Gaussian modulation func-
tion, we visualise the distribution of feature values before and
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after Gaussian modulation. As can be seen from Figure 2, after
Gaussian modulation, the large feature values and small feature
values are suppressed, while the middle feature values are
enhanced.

2.3 | Complementary integrated
Transformer module

In recent years, Transformer has been widely used in natural
language processing. In ref. [45], ViT is a Transformer-based
classical network applied to image classification tasks and
achieved satisfactory classification performance. Unlike CNN,
Transformer can obtain the long-term dependence between
remote features and deep semantic features through modelling.

Transformer, the combination of these two modes is beneficial
to the full extraction of features. Therefore, this paper designed
a CITM. An illustration of CITM is shown in Figure 3. The
structure of CITM is shown in Figure 3a. Complementary
integrated Transformer module mainly consists of position
embedding and complementary multi-head self-attention (C-
MHSA) module. Among them, C-MHSA is the key part of
CITM, which is shown in Figure 3b.

Before implementing the CITM, in order to facilitate data
processing, we reshape x € R into x € R™*, and obtain
Bin € R™ through linear mapping,

As shown in Figure 1, the output B, € R after linear
mapping is used as the input of position embedding. Then, the
location information PE is encoded and added to the tokens
represented by [Tgls, T,...,T;]. The resulting can be repre-

Considering the complementary characteristics of Conv and sented as
Origin Guassian
10 T T T T T T T T
1.0
0.8- - .
g =
= 2
< —
= o8 1= -
g S 05-
5 041 - E .
far Q
< o=
0.2- | < _
0.0
0-0 T T T T T T T
0.0 0.2 04 06 08 10 0.0 05 10

Before modulation

(a)

Before modulation

(b)

FIGURE 2 Distribution before and after Gaussian modulation. (a) Original distribution of feature values, (b) The distribution after enhancing secondary

features with Guassian modulation.

D
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FIGURE 3 The specific architecture ) ’
description of complementary integrated Emb.e(.lded
Transformer module (CITM). (a) The architecture Position 0 K vV

of CITM and (b) The architecture of C-MHSA (The
key part of CITM).

(2)

(b)
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Tyn=|T, T, ... T,| + PE (7)

where Tgls represent classification token. Transformer can
obtain deeper semantic features through modelling; It includes
multi-head self-attention (MHSA), two LayerNorm (LN) and
one MLP layer. Among them, Transformer can achieve
excellent performance thanks to MHSA. Generally, the input
of MHSA includes Query (Q), Key (K), and Value (V).
However, MHSA multiplication is considered to be a low-pass
filter [52]. MHSA establishes different projection information
in multiple different projection spaces, and more focuses on
the low-frequency information of the image. On the contrary,
Conv uses a filter to extract information in local receiving
domain, and more focuses on the high-frequency information
of the image. Considering the complementary characteristics
of Conv and Transformer, a C-MHSA is proposed in this
paper. Its structure is shown in Figure 3b. The process of
C-MHSA is

SA(Q,K, V) = Soft max (%) 1% (8)

CMHSA = Concat(SAy,SAs, ..., SAR) W + Conov(V) (9)

where dg represents the dimension of K, b represents the
number of headers, W € R?*4*4: i5 the weight parameter,
Conv(-) is the convolution function (including Conv and BN
layers), and Concat(-) is the cascade function. Similar to
MHSA, C-MHSA first linearly maps into three invariant
matrices Q, K, and V, and uses the softmax function to
calculate the score. Then, multiply the obtained result with V
to obtain the self-attention (SA). Finally, the results of each
head SA are connected together and fused with the V' after
convolution to obtain the C-MHSA output result. This inte-
gration method can effectively utilised the advantages of
Transformer and Conv, and fully extract the high-frequency
and low-frequency information of hyperspectral images.
Finally, the output from C-MHSA is input to LN and MLP
layers. The implementation process of CITM is summarised in
Algorithm 1.

Algorithm 1 The implementation process of CITM

Input: Input B;, € R°?

Output: The output of CITM is By,: € RE*Z.

l1: fori=1to T'do

2: Perform position embedding, the result

denoted asTi,-

3: Perform the feature mapping layer and
obtains three different output
matrices Q, K and V.

4: V obtains the output Conv(V) through

convolution and BN layer.

4: Q0 and K perform inner product
operation, and the softmax function is
performed on the result Softmax
(OK"/+/dx ).

5: The SA output SA(Q,K,V) is generated by
multiplying Softmax(Q0K*/\/dx) and V.

6: The results of each head SA(Q, K, V) are

connected together and feature fusion

is carried out to generate C-MHSA
output.

Perform residual mapping layer.

Perform LN layer.

: Perform MLP layer.

0: Perform residual mapping layer.

end for

7
8:
9.
1

2.4 | Implementation

For better illustrate the proposed CITNet, this paper takes In-
dian Pines dataset as an example for detailed description. The
dataset has a size of 145 x 145 x 200. Firstly, the output of the
origin data after PCA preprocessing and 3D cube extraction is
13 x 13 x 30. In the first Conv3D, eight 7 X 7 X 7 convolution
kernels are convoluted to obtain eight 13 X 13 x 30 features.
Then the obtained features are passed through 64 1 x 1 x 30
convolution kernels are convoluted to acquire 64 feature with a
size of 13 X 13 X 1 and reshaped it into 64 feature map with the
size of 13 X 13. Then, 64 feature map with the size of 13 x 13
passes through CGMAM, and the output size is the same as the
input. Finally, the output is passed through Conv2D, and 64
convolution kernel with the size of 7 x 7. Finally, the spatial
dimension is flattened as a vector, and the output is x € R**1%,

Next, in order to facilitate data processing, the x € [RO4>169
obtained above is linearly mapped to obtain the feature
x € ROX64, Then, an all zero vector is connected to x as a
learnable marker, and a learnt position marker is embedded to
obtain T, € R®*% . After the CITM module, the feature size
remains unchanged. The process of HSI classification by the
proposed CITNet is shown in Algorithm 2.

Algorithm 2 HSI classification based on the
proposed CITNet

Input: HSI data Xe&R™"!, real label
y € R, PCA band number is 30, the
size of cube space is 13x13, and the
proportion of training samples is p%.

Output: The prediction label of the test

dataset.

1: Set the batch size to 64, Adam optimiser

(learning rate 0.005), and epoch T to 200.
2: The output of PCA is Xpe, € RP™*P,
3: N adjacent 3D cubes x € RS*%*? are all
generated by X,c,, and all x are
proportionally p% randomly divided into
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training datasets, and the remaining data
samples are test datasets.
4: for i =1to Tdo
5: Perform Conv3D.
6: Reshape the output of Conv3D to R®*°*¢
and perform CGMAM.
7 Perform Conv2D.
8: Reshape the output of Conv2D and after
Linear mapping, the output is B;, € R**.
9: Perform CITM.
10: Use the softmax function to identify
the label.
end for
11: Use test dataset with the trained model
to get predicted labels

3 | EXPERIMENTAL RESULTS AND
ANALYSIS

3.1 | Dataset description

Five HSI datasets have been considered in our experiments in
this paper, including Indian Pines dataset, Pavia dataset, Salinas
dataset, Houston 2013 dataset, and WHU-Hi-LongKou data-
set. The category name and data sample division of all datasets
are listed in Table 1.

Indian Pines dataset: The dataset contains 145 X 145 pixels
and 224 spectral bands. In addition to the water absorption
band and low signal-to-noise ratio (SNR) band, there are still
200 bands to be used. In addition, the dataset contains 16 land
cover categories, mainly including crops and plants.

Pavia dataset: The HSI was acquired by the sensor of
reflective optics spectral image system (ROSIS-3). It has 115
spectral bands, and the space size of the image is 610 X 340,
including 9 land cover categories. After removing 12 low
SNR and noise bands, the remaining 103 spectral bands were
used.

Salinas dataset: The HSI contains 512 X 217, and contains
224 spectral bands. After removing the discarded noise bands
(the number of 108-112, 154-167, and 224), there are 204
spectral bands left. The Salinas dataset contains 16 land cover
categories with a spatial resolution of 3.7 m.

Houston 2013 dataset: The HSI was captured by the
hyperspectral image analysis team and NCALM using sensors
on the campus of the University of Houston and nearby urban
areas. The space size is 349 x 1905, and contains 144 spectral
bands, and its wavelength range is 380-1050 nm. Houston
2013 has 15 land cover categories.

WHU-Hi-LongKou dataset: The WHU-Hi-LongKou
dataset was acquired on July 17, 2018, in Longkou Town,
Hubei province, China, by an 8-mm focal length Headwall
Nano-Hyperspec imaging sensor. The spatial size of the image
is 550 x 400 and has 270 spectral bands. In addition, the image
is about the agricultural scene, including nine categories.

3.2 | Experimental setup

3.2.1 | Evaluation indicators

For HSI classification, there are three commonly used evalu-
ation indicators: Overall accuracy (OA), average accuracy (AA),
and kappa coefficient (k) [61]. Let H = (ﬂiJ)nxn be the
confusion matrix between the real category information and
the predicted category information. Where 7 is the number of
categories, 4;; A is the quantity of category j classified as
category i. Then, the OA value is

n ..
EQ%i%ﬁﬁ.x 100% (10)

OA =
where M is the total number of samples, and OA refers to the
proportion of samples accurately classified in all samples.
Another evaluation indicator AA refers to the classification
accuracy of each category.

x 100% (11)
11/

AA = ZZ:EZJ

Finally, the specific calculation of x is as follows

B / S (12)

In the above formula, 2; and 2_; respectively represent all
column elements corresponding to row 7 and all row elements
cotresponding to column 7 in the confusion matrix H.

322 | Compatison methods
For comparison, some state-of-the-art classification networks
are chosen, including 2DCNN [32], 3DCNN [34], PyResNet
[31], Hybrid-SN [39], SSRN [38], ViT [45], SF [40], SSFTT
[49], and SSTN [50].

2DCNN is composed of two convolution layers and two
pool layers.

3DCNN is composed of two multi-scale 3-D convolution
modules and a full connection layer. Each multi-scale convo-
lution module contains four convolution kernels with a size of
1x1x1,1x1x31x1x5and1 x 1 x 11.

Spectral-spatial residual network consists of spatial residual
module and spectral residual module. Among them, the spatial
residual module contains five convolution blocks, and each
convolution block is composed of 3-D convolution layer and
BN layer. The spectral residual module also contains five
convolution blocks.

PyResNet consists of five different modules, namely C, P1,
P2, P3, and output module. Among them, C contains a
convolution layer and BN layer, while pyramid modules P1, P2,
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and P3 are composed of three pyramid residual units. Finally,
the output module is classified by down sampling and a full
connection layer.

Hybrid-SN is a hybrid CNN network. The spectral-spatial
information of the image are extracted by 3-D CNN, and 3-D
CNN contains three 3-D convolution layers. The spatial fea-
tures of the image are extracted by 2-D CNN, and 2-D CNN
contains a 2-D convolution layer.

ViT is a classical method based on Transformer. ViT in-
cludes a linear mapping component and Transformer encoder.

Spectral Transformer rethinks the classification of HSIs
from the perspective of spectral sequence, and proposes a
Transformer-based backbone network to replace the archi-
tecture based on CNN or RNN.

Spectral-spatial feature tokenisation Transformer is a
spectral-spatial feature tokenisation Transformer network.

Spectral-spatial Transformer network is a spectral-spatial
Transformer network, and a FAS framework is used to
determine the hierarchical operation selection and block-level
order of SSTN.

3.2.3 | Implementation details
All experiments in this paper are implemented on the Pytorch
software platform, and the hardware platform of the experi-
ment is a desktop Personal Computer with Intel (R) Core (TM)
19-9900K CPU and a NVIDIA GeForce RTX 2080Ti GPU. It
is worth noting that we use the batch size, learning rate and
epoch to 64, 5e-3, and 200 respectively.

For fair comparison, all experiments in this paper were
carried out in the above experimental environment, and all
results were taken as the average of 20 experiments.

TABLE 2 Ablation research of the complementary integrated
Transformer module (CITM) module on Indian Pines dataset

3.3 | Model analysis

3.3.1 | Ablation experiments

Ablation research of the proposed complementary
integrated Transformer module

Transformer can obtain deeper semantic features through
modelling, and more focus on the low-frequency information
of the image. On the contrary, Conv uses a filter to extract
information in local receiving domain, which more focuses to
the high-frequency information of the image. Considering the
complementary characteristics of the two, a CITM module is
proposed in this paper. The difference between this CITM
module and the original Transformer module is that Conv is
introduced into the MHSA part. In order to verify the
effectiveness of the designed CITM module, this paper takes
Indian Pines dataset as an example to study ablation. The
results are shown in Table 2, we can see that after the intro-
duction of Conv, OA, AA, and k have been greatly increased.
In order to further verify the influence of convolution kernel
size on the performance of CITM module, the convolution
kernel with size of 3 x 3,5 x 5, and 7 X 7 are adopted for
experiments. It can be seen that the classification performance
decreases with the increase of convolution kernel size.
Therefore, the ablation research results fully prove that the
introduction of Conv into Transformer can effectively
improve the classification accuracy. With the gradual increase
of the size of Conv kernel, the classification accuracy de-
creases gradually. This is because as the convolution kernel
size increases, the fine features that can be obtained become
less and less.

Ablation research of the proposed CITNet

CITNet is mainly composed of three components, including
Conv3dd & Conv2d, CGMAM, and CITM. Conv3D &
Conv2D are used to extract the spectral and spatial features of
HSI. In order to enhance the secondary features, a CGMAM is
proposed, which is embedded between Conv3D and Conv2D.
In addition, this paper also designs a CITM module, which

With or without Conv OA (%) AA (%) K X 100
combines Transformer and Conv. To verify the effectiveness of
Without Conv 96.36 91.00 95.84 . .
these three components, some ablation experiments are per-
With Conv 3%3 98.71 98.13 98.53 formed on the Indian Pines dataset. The results of ablation
5%5 98.20 97.08 97.94 experiment are shown in Table 3. In the first case, the network
only contains Conv3D & Conv2D, and the final classification
TX7 97.93 96.67 97.64 . .
accuracy is the worst. In the second case, the network includes
Note: Optimal results are bolded. Conv3D & Conv2D and CGMAM, and the classification
C nent Metri TABLE 3 Ablation research of the
omponents ete CITNet on Indian Pines dataset
Cases Conv3D&Conv2D CGMAM CITM OA (%) AA (%) x X 100
1 v x x 91.34 84.70 90.12
2 v v x 93.88 88.46 93.02
3 v x v 98.23 93.78 97.99
4 v v v 98.71 98.13 98.53

Note: Optimal results are bolded.
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accuracy is improved. In the third case, the network includes
Conv3D & Conv2D and CITM, and the classification accuracy
is better than the first two cases. Compared with the first case,
the OA, AA, and k of the third case increased by 6.89%,
9.08%, and 7.87%. In the fourth case, when the network
contains these three components, the classification accuracy is
the best. Therefore, the ablation research fully verified the
effectiveness of the main components in CITNet.

3.3.2 | Parameter sensitivity analysis

In the deep learning network, many parameters have an impact
on the network performance. Among them, the learning rate
and batch size directly affect the training process of the model.
In other words, the learning rate directly affects the conver-
gence state of the network, and the batch size affects the
generalisation performance of the network, and these two
parameters will also affect each other. In order to explore the
suitable learning rate and batch size of the proposed CITNet
network, we conducted a combined experiment of different
learning rate and batch size on five datasets. Among them, the
selected learning rate set is {le —4,5e — 4, 1le — 3,5¢ — 3},
and the selected batch size set is {128,64,32,16}. The
experimental results are shown in Figure 4.

In Figure 4, red represents the maximum value area of
contour and dark blue represents the minimum value area of

OA (%)

(©

contour. It can be seen from the Figure 4 that in Indian Pines
dataset, the OA value increases with the increase of learning
rate, while different batch sizes have little impact on the OA
value, as shown in Figure 4a. In Pavia dataset, larger learning
rate and batch size can often obtain larger OA value, as shown
in Figure 4b. In Salinas dataset, the optimal batch size is 64,
and the corresponding different learning rates can obtain
higher OA values, as shown in Figure 4c. On the Houston 2013
dataset, it is obvious that the optimal learning rate is 5e — 3,
and the corresponding optimal batch sizes are 128 and 64, as
shown in Figure 4d. Similarly, on the WHU-Hi-LongKou
dataset, the optimal learning rate and batch size are 5e — 3
and 64, respectively, as shown in Figure 4e. To sum up, we
select 5e —3 and 64 as the learning rate and batch size of
CITNet network.

3.3.3 | Different input space sizes

For hyperspectral image classification, different input space
sizes also have an impact on classification performance. In
order to explore the optimal input space size of the five
datasets on the proposed network, some experimental have
been conducted. The size of the input space selected in the
experiment is 7 X 7,9 x 9, 11 x 11, 13 x 13, 15 x 15,
17 x 17, 19 x 19, and 21 X 21. The results are shown in
Figure 5. As can be seen from Figure 5, the results show that

OA (%)

OA (%)

FIGURE 4 Experimental results of different learning rates and batch sizes on all datasets. (a) Indian Pines, (b) Pavia, (c) Salinas, (d) Houston 2013, and

(e) WHU-Hi-LongKou.
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the OA value of Indian Pines, Pavia, and WHU-Hi-LongKou
datasets first increases and then decreases with the increase
of input space. The OA values of Salinas and Houston 2013
datasets gradually increase with the increase of input space size,
and tend to be flat after obtaining the highest OA value.

100 -
99 4
98 1
<
=
<
<
O 974
96 1 - Ind@nPines
~#— PaviaU
—&— Salinas
~%¥— Houston
951 ~#— WHU-Hi-LongKou

7x7  9x9  11x11 13x13 15x15 17x17 19x19 21x21
The percentage of used training samples(%)

FIGURE 5 Effect of different input space size on classification
accuracy Overall accuracy (OA).

TABLE 4 Classification accuracy of all methods on Indian Pines dataset

Among them, when the space size of Indian Pines, Pavia, and
WHU-Hi-LongKou is 13 x 13, the maximum OA value was
obtained. When the input space size of Salinas and Houston
2013 is 14 x 14 and 19 X 19 respectively, the maximum values
of OA are obtained, but they are not much different from OA
value obtained by input space with the size of 13 x 13.
Considering that the larger the input space will inevitably bring
a large number of parameters, the size of the input space
adopted by CITNet on the five datasets is 13 X 13.

34 |

Result analysis

3.4.1 | Quantitative analysis

Tables 4-8 give the classification results of OA, AA, k, and per-
class on the five datasets. Through rough observation, it can be
easily found that both CNN-based and Transformer-based
methods have achieved satisfactory classification accuracy. In
particular, compared with other methods, our method has the
highest OA on all datasets. Specifically, among the CNN-based
methods, the extracted features are insufficient due to the
shallow network of 2DCNN and 3DCNN. It is not surprising
that these two methods obtain the worst classification accuracy.
Hybrid-SN combines 3-D CNN and 2-D CNN, which considers

CNNs

Transformers

Methods 2DCNN [32] 3DCNN [34] PyResNet [31] Hybrid-SN [39] SSRN [38] ViT [45] SF [40] SSFTT [49] SSTN [50] Proposed

OA (%) 82.04 81.15 92.01 94.31
AA (%) 89.09 87.15 89.67 94.32
Kk x 100 79.26 78.26 90.91 93.51
1 100 100 96.03 96.91
2 76.01 72.54 92.62 90.87
3 77.24 69.29 94.48 92.05
4 96.07 95.83 93.13 91.32
5 93.85 95.23 94.25 98.73
6 79.85 81.47 92.40 97.87
7 80.00 60.00 61.11 91.32
8 97.04 95.89 98.44 98.34
9 100 100 69.44 95.54
10 83.60 87.14 92.51 91.61
11 75.16 75.66 93.43 95.23
12 82.73 77.70 92.70 92.74
13 100 99.86 94.16 99.52
14 92.99 93.23 99.35 96.79
15 90.86 91.10 77.43 94.74
16 100 99 93.31 85.57

98.54 79.73 88.54 97.43 95.43 98.71
97.92 83.36 91.81 93.85 84.54 98.13
98.33 76.75 86.88 97.07 94.78 98.53
96.43 99.00 100 85.71 39.41 88.10
99.38 72.83 82.89 98.13 96.91 98.68
98.50 69.39 84.39 96.66 95.55 99.20
100 82.71 91.44 96.73 96.46 98.13
97.48 85.30 93.50 98.39 94.99 96.32
98.48 85.22 91.74 99.09 96.98 99.70
100 92.86 100 100 31.12 100
98.72 92.06 95.34 98.38 96.71 99.54
100 79.50 100 58.82 40.00 100
96.80 76.73 87.01 99.31 88.37 96.11
99.13 77.39 88.19 98.10 96.29 99.86
96.43 68.13 79.56 89.70 92.87 94.57
100 93.56 95.37 99.46 98.79 100
99.80 92.06 93.92 98.68 98.79 99.91
97.74 82.41 91.14 93.97 94.17 100
87.80 84.62 94.33 90.47 95.24 100

Note: Optimal results are bolded
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TABLE 5 C(lassification accuracy of all methods on Pavia dataset

CNNs Transformers

Methods 2DCNN [32] 3DCNN [34] PyResNet [31] Hybrid-SN [39] SSRN [38] ViT [45] SF [40] SSFTT [49] SSTN [50] Proposed

OA (%)  94.55 93.69 94.70 97.99 98.79 94.35 95.89 99.15 97.20 99.63
AA (%) 93.55 93.38 93.96 97.49 97.81 92.15 93.64 98.62 96.75 99.33
k x 100 9274 91.56 92.94 97.33 98.40 92.48 94.55 98.87 96.27 99.51
1 91.07 88.64 89.74 97.19 99.81 90.74 93.23 99.67 95.89 99.79
2 97.18 96.27 97.99 99.22 100 97.57 98.96 99.99 98.83 99.97
3 83.47 83.55 88.97 97.66 81.52 82.37 82.55 98.59 92.36 97.04
4 99.31 98.99 99.41 99.08 99.96 99.14 99.83 93.71 97.21 99.00
5 99.84 99.44 99.13 98.18 99.76 96.87 99.73 99.84 96.13 100

6 95.81 95.83 96.09 98.68 99.98 94.43 97.79 99.54 99.95 100

7 89.88 91.04 87.77 97.36 100 79.37 80.51 99.53 99.08 100

8 86.76 87.87 88.93 92.16 99.28 89.59 90.31 98.00 92.89 98.91
9 98.66 98.76 97.61 97.87 100 99.30 99.88 98.67 98.41 99.22

Note: Optimal results are bolded.

TABLE 6 Classification accuracy of all methods on Salinas dataset

CNNs Transformers

Methods 2DCNN [32] 3DCNN [34] PyResNet [31] Hybrid-SN [39] SSRN [38] ViT [45] SF [40] SSFTT [49] SSTN [50] Proposed

OA (%) 96.01 96.62 98.22 98.99 99.85 97.87 97.72 99.41 94.03 99.90
AA (%) 98.02 98.22 98.97 99.29 99.84 99.43 98.85 99.37 98.08 99.83
k x 100  95.55 96.24 98.02 98.88 99.83 97.55 97.46 99.34 93.40 99.89
1 99.81 99.72 99.89 99.86 100 97.87 99.40 99.95 99.37 100
2 99.62 99.31 100 99.98 100 99.43 99.97 99.92 99.86 100
3 99.39 98.51 99.98 99.82 100 97.55 98.75 99.89 98.52 100
4 99.51 99.42 97.31 99.63 99.56 98.98 99.79 99.85 99.03 99.47
5 99.10 99.02 99.40 99.45 99.49 98.68 99.13 98.66 98.85 99.96
6 99.95 99.96 99.94 99.87 99.99 99.92 99.93 99.79 99.91 100
7 99.62 99.76 100 99.81 99.96 99.84 99.96 99.97 99.92 100
8 90.84 92.18 97.40 98.15 99.88 92.45 94.86 98.55 94.63 99.95
9 99.73 99.93 99.99 99.88 100 99.39 99.93 99.88 99.45 99.86
10 95.84 96.64 99.39 99.29 99.78 98.16 98.25 99.13 99.64 99.90
11 97.98 98.69 98.52 99.05 99.63 94.14 99.11 100 98.80 99.61
12 99.58 99.59 99.55 99.87 99.95 99.08 99.75 100 99.91 100
13 98.95 99.06 99.51 99.07 99.93 98.55 100 99.20 99.42 99.31
14 99.17 99.18 99.82 98.02 99.79 97.35 99.69 95.67 99.60 100
15 89.75 90.77 92.94 97.15 99.55 89.02 93.05 99.93 83.00 99.94
16 99.54 99.85 99.90 99.73 100 99.50 99.96 99.48 100 99.30

Note: Optimal results are bolded.
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TABLE 7 C(lassification accuracy of all methods on Houston 2013 dataset

CNNs

Transformers

Methods 2DCNN [32] 3DCNN [34] PyResNet [31] Hybrid-SN [39] SSRN [38] ViT [45] SF [40] SSFTT [49] SSTN [50] Proposed

OA (%) 92.63 93.01 95.85 97.83
AA (%) 93.27 93.52 96.26 98.19
k x 100 92.03 9243 95.51 97.65
1 97.50 98.89 94.85 99.18
2 96.72 95.41 98.69 98.50
3 98.75 98.65 92.58 100

4 96.26 97.94 96.25 97.93
5 97.52 97.70 97.14 99.50
6 95.10 95.84 98.41 99.74
7 88.56 89.08 94.78 96.65
8 86.26 89.41 96.99 99.45
9 86.80 86.20 91.81 95.94
10 94.41 91.44 96.10 94.95
11 87.97 88.65 96.57 95.91
12 91.47 90.97 96.17 96.89
13 91.44 91.16 95.60 98.59
14 95.27 93.46 99.63 100

15 97.95 97.91 98.33 99.63

98.98 92.28 93.83 98.35 92.82 99.02
99.01 93.57 94.17 97.92 94.13 98.89
98.90 91.65 93.32 98.22 92.23 98.95
99.59 90.15 96.99 97.42 91.46 99.47
99.90 93.90 94.88 99.47 88.33 99.91
100 98.94 98.30 98.09 99.54 100
98.51 98.74 97.29 99.20 95.69 99.26
98.24 98.41 98.71 99.73 99.64 99.91
98.89 97.12 93.77 97.95 98.70 99.32
100 93.54 93.23 97.29 96.14 96.85
99.90 88.52 90.72 99.20 97.92 97.50
99.48 90.54 89.73 96.45 90.62 98.49
98.40 83.88 91.66 99.55 83.26 99.91
98.80 92.15 92.75 99.55 89.36 100
96.65 86.59 88.25 99.46 91.92 99.82
97.67 95.14 91.64 86.52 92.96 92.91
100 97.66 97.04 99.22 99.01 100
99.07 98.26 97.53 99.66 97.45 100

Note: Optimal results are bolded.

TABLE 8 Classification accuracy of all methods on WHU-Hi-LongKou dataset

CNNs

Transformers

Methods 2DCNN [32] 3DCNN [34] PyResNet [31] Hybrid-SN [39] SSRN [38] ViT [45] SF [40] SSFTT [49] SSTN [50] Proposed

OA (%)  89.95 95.12 95.24 98.60
AA (%)  80.61 89.72 91.25 96.73
k x 100  86.56 93.57 93.91 98.16
1 96.03 99.75 99.09 99.20
2 59.83 66.72 81.42 96.53
3 96.67 98.92 73.08 94.00
4 85.20 95.10 99.07 98.63
5 56.31 76.30 89.13 95.13
6 91.99 97.81 98.71 98.74
7 98.86 98.80 99.58 99.69
8 67.55 82.63 85.58 95.29
9 73.03 91.40 95.62 93.36

98.67 86.48 92.43 98.99 97.20 99.20
98.48 73.71 82.60 97.81 94.87 97.88
98.25 82.07 90.05 98.68 96.31 98.95
99.97 83.68 96.11 98.24 99.91 99.75
99.70 39.75 72.39 99.86 82.17 99.12
100 59.38 83.48 99.07 100 96.50
97.43 87.93 93.71 99.60 97.24 99.23
99.80 35.03 67.89 97.57 100 97.30
99.97 95.80 94.80 99.45 99.93 99.48
99.54 99.25 97.6 99.82 99.77 99.91
91.65 92.09 80.60 90.93 77.33 94.57
98.23 70.50 57.07 95.79 97.50 95.09

Note: Optimal results are bolded.

both spectral-spatial features and spatial features, and finally
obtains high classification accuracy. Deep CNN network can
obtain features with stronger discrimination ability, but it often
brings the problem of gradient disappearance or gradient

explosion. In order to solve these problems, SSRN introduces
the residual structure into the spectral module and spatial
module, and obtains the optimal classification accuracy based on
CNN method. In addition, among the methods based on

85UB017 SUOWWOD BAIIE8.D 8(ceoljdde ay) Aq peusenob ae s9oile VO ‘8sN JO Sa|nJ o} Akeiqi8uljuO 3|1 UO (SUOTIPUOO-PUB-SWBH W00 A8 1WA eiq U JUo//SdnL) SUORIPUOD pue swie 1 8y} 89S *[£202/20/6T] U0 Areiqiaulluo A8|Im BuIyD8URILO0D AQ 0STZT Z19/6V0T 0T/I0P/WL00 48| IM AIq U1 |UO" Yo Jessa B //:Sd1Y W1} pepeoumoq ‘0 ‘ZZEz89re



LIAO ET AL.

(®

- Background - Alfalfa Corn-notill - Corn-mintill Comn Grass-pasture
- Grass-trees -Grass—pasture—mowed - Hay-windrowed - Oats Soybean-notill Soybean-mintill
Soybean-clean - Wheat Woods Bldg-Grass-Tree-Drivers - Stone-Steel-Towers

FIGURE 6 Classification maps of all methods on Indian Pines dataset. (a) False colour composite, (b) Ground truth map, (c)-(l) are classification maps of
2DCNN (82.04%), 3DCNN (81.15%), PyResNet (92.01%), Hybrid-SN (94.31%), SSRN (98.54%), ViT (79.73%), SF (88.54%), SSFTT (97.43%), SSTN
(95.43%), and Proposed (98.71%).
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FIGURE 7 Classification maps of all methods on Pavia dataset. (a) False colour composite, (b) Ground truth map, (c)-(l) are classification maps of 2DCNN
(94.55%), 3DCNN (93.69%), PyResNet (94.70%), Hybrid-SN (97.99%), SSRN (%), ViT (94.35%), SF (95.89%), SSFTT (99.15%), SSTN (97.20%), and
Proposed (99.63%).
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Transformer, ViT, as a classical model, shows the great potential
of Transformer in HSI classification. Inspired by ViT, SF obtains
gratifying classification results by fully considering the spectral
sequence. It is worth noting that the latest two Transformer-
based SSFT'T and SSTN have achieved better classification ac-
curacy than most CNN-based networks on five datasets.
Finally, it can be found that among all CNNs and Trans-
formers, our method obtains the highest classification accu-
racy. Compared with the SSRN with the highest classification
accuracy in CNNs, the OA value of the proposed method is
0.17%, 0.84%, 0.05%, 0.04%, and 0.53% higher on the five
datasets respectively. Compared with SSFTT with the highest
classification accuracy in Transformers, the OA value of the
proposed method is 1.28%, 0.48%, 0.49%, 0.67%, and 0.21%
higher on the five datasets respectively. It is worth noting that

for some categories that are difficult to classify, such as cate-
gories 15 and 16 of Indian Pines and category 13 of Houston
2013, the proposed method achieves 100% classification ac-
curacy. This also fully shows that the proposed method
effectively improves the ability of feature discrimination by
integrated CNN and Transformer.

3.4.2 | Visual evaluation

The classification maps of the comparison method and the
proposed method on five datasets are shown in Figures 6-10.
Through visual comparison, it can be known that the classifi-
cation map of the proposed method CITNet is closest to the
ground truth map on all datasets. It is obvious that due to the

(2) (h) (i)

- Background -Brocoil—green-weeds_l

Fallow-smooth [l Stubble

[ Celery
Corn-senesced-green-weeds Lettuce-romaine-4wk
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Brocoil-green-weeds 2 B railow

0] (k) M
Fallow-rough-plow
[ Grapes-untrained ] Soil-vinyard-develop
BN Lcttuce-romaine-6wk

Lettuce-romaine-5wk

[ | Vinyard-vertical-trellis

FIGURE 8 Classification maps of all methods on Salinas dataset. (a) False colour composite, (b) Ground truth map, (c)-(l) are classification maps of
2DCNN (96.01%), 3DCNN (96.62%), PyResNet (98.22%), Hybrid-SN (98.99%), SSRN (99.85%), ViT (97.87%), SF (97.72%), SSFTT (99.41%), SSTN

(94.03%), and Proposed (99.90%)
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FIGURE 9 Classification maps of all methods on Houston 2013 dataset. (a) False colour composite, (b) Ground truth map, (c)-(l) ate classification maps of
2DCNN (92.63%), 3DCNN (93.01%), PyResNet (95.85%), Hybrid-SN' (97.83%), SSRN (98.98%), ViT (92.28%), SF (93.83%), SSFTT (98.35%), SSTN

(92.82%), and Proposed (99.02%).

strong local context feature extraction ability of CNN, some
CNN-based methods have obtained relatively smooth classifi-
cation maps, including hybrid-SN and SSRN. This is also due to
their use of 3-D CNN and 2-D CNN to extract the spectral and
spatial information of HSI. The worst classification is 2DCNN
which only considers spatial information. Spectral feature is an
important feature of HSI classification, and Transformer can get
the long-term dependence between long-distance features
through modelling, and adaptively pay attention to different
regions and pay attention to the low-frequency information of
more images. We can further find that the Transformer-based
method cannot well classify some small-size isolated objects
due to considering more low-frequency information, such as the
red “Healthy grass” category and the bright green “Stressed
grass” category in the Houston 2013 dataset. It is worth noting
that although the classification results acquired by the
Transformer-based methods ViT and SF still have many mis-
classified categories, it also fully shows the potential of the
Transformer-based method. Therefore, our method integrates
CNN and Transformer, which can not only fully extract the
high-frequency features of local context, but also retain more
low-frequency features of the image. Through the visual com-
parison, it is not difficult to verify the effectiveness of the pro-
posed method.

3.4.3 | Time cost compatison

In order to further compare the proposed methods, Table 9
gives the training time and test time required for all methods
on the four datasets. By comparing the results in Table 9, it can
be found that the network training time and test time required
by 2DCNN and 3DCNN in CNN method are short, which is
related to their shallow network. The training time and testing
time of PyResNet, Hybrid-SN, and SSRN based on CNN are
longer than those based on Transformer, which is also the
advantage of Transformer method. Similarly, we can easily
observe that the training time and testing time required by the
Transformer-based method are similar, while the testing time
required by the proposed method is the shortest on the Indian
Pines, Pavia, and Houston 2013 datasets. Although the test
time required by the proposed method in Salinas dataset is not
the optimal result, it is the suboptimal result. Although deep
CNN network can obtain better performance, its computa-
tional efficiency is poor. However, Transformer can obtain
high-level semantic information without building a deep
network, which has high computational efficiency. Therefore,
the integration of CNN and Transformer can not only improve
the computational efficiency, but also have good classification
performance, which fully shows its great potential.
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FIGURE 10 Classification maps of all methods on WHU-Hi-LongKou dataset. (a) False colour composite, (b) Ground truth map, (c)-(l) are classification
maps of 2DCNN (89.95%), 3DCNN (95.12%), PyResNet (95.24%), Hybrid-SN (98.60%), SSRN (98.67%), ViT (86.48%), SF (92.43%), SSFTT (98.99%), SSTN

(97.20%), and Proposed (99.20%).

TABLE 9 Training time (min) and test

Indian Pines  Pavia Salinas ;(1); e time (5) of all methods on four datasets
Methods Train Test Train Test Train Test Train Test
CNNs 2DCNN [32] 1.21 6.60  1.48 1540 455 38.60 1.40 6.80
3DCNN [34] 0.89 640 119 1560 292  41.80 1.49 7.00
PyResNet [31] 5.53 18.67 931 48.67 13.10  88.67 376 12.67
Hybrid-SN [39]  2.57 6.74 1828 3840 3479 77.40 15.00 9.20
SSRN [38] 7.79 5.87 3410 840 5438 1892 1156 7.28
Transformers  ViT [45] 2.98 10.95 231 753 643 8.19 1.41 5.65
SF [40] 1.24 489 219 1364 729 2222 1.70 3.26
SSFTT [49] 1.14 1.06 2.02 3.22 1.30 2.76 1.52 1.31
SSTN [50] 0.98 134 287 1040 354 16.53 1.23 2.04
Proposed 1.11 071 227 321 273 374 1.62 1.04

4 | CONCLUSIONS

A CITNet network for hyperspectral image classification is
proposed. First, CITNet uses Conv3D and Conv2D to extract
the shallow layer features of the image. Then, a CGMAM
embedded between Conv3D and Conv2D is designed to
emphasise the secondary features extracted by Conv3D. Due
to own limitations, Conv is not conducive to the establishment
of long-term dependence, and is more inclined to the

extraction of high-frequency information. On the contrary,
Transformer modelling can get the long-term dependence
between long-distance features and pay more attention to
low-frequency information. Considering the complementary
characteristics of Conv and Transformer, a CITM module is
proposed, which integrates Conv and Tranformer. In order to
verify the effectiveness of the designed network, some quan-
titative experiments and visual evaluation have been conducted
on five common datasets, and fully verified the effectiveness of
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CITNet. In the future work, we will aim at integrating the
advantages of CNNs and Transformers, and introduce some
advanced technologies (including migration learning and self-
supervised learning) to further improve the Transformer
framework.
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$HZL: In the past, convolutional neural network (CNN) has become one of the most popular deep
learning frameworks, and has been widely used in Hyperspectral image classification tasks.
Convolution (Conv) in CNN uses filter weights to extract features in local receiving domain, and
the weight parameters are shared globally, which more focus on the high-frequency information of
the image. Different from Conv, Transformer can obtain the long-term dependence between
long-distance features through modelling, and adaptively focus on different regions. In addition,
Transformer is considered as a low-pass filter, which more focuses on the low-frequency
information of the image. Considering the complementary characteristics of Conv and Transformer,
the two modes can be integrated for full feature extraction. In addition, the most important image
features correspond to the discrimination region, while the secondary image features represent
important but easily ignored regions, which are also conducive to the classification of HSIs. In this
study, a complementary integrated Transformer network (CITNet) for hyperspectral image
classification is proposed. Firstly, three-dimensional convolution (Conv3D) and two-dimensional
convolution (Conv2D) are utilised to extract the shallow semantic information of the image. In
order to enhance the secondary features, a channel Gaussian modulation attention module is
proposed, which is embedded between Conv3D and Conv2D. This module can not only enhance
secondary features, but suppress the most important and least important features. Then, considering
the different and complementary characteristics of Conv and Transformer, a complementary
integrated Transformer module is designed. Finally, through a large number of experiments, this
study evaluates the classification performance of CITNet and several state-of-the-art networks on
five common datasets. The experimental results show that compared with these classification
networks, CITNet can provide better classification performance.
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